All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10363799" target="_blank" >RIV/00216208:11320/17:10363799 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.12" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.12" target="_blank" >10.4230/LIPIcs.SoCG.2017.12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

  • Original language description

    Let d and k be integers with 1 &lt;= k &lt;= d-1. Let Lambda be a d-dimensional lattice and let K be a d-dimensional compact convex body symmetric about the origin. We provide estimates for the minimum number of k-dimensional linear subspaces needed to cover all points in the intersection of Lambda with K. In particular, our results imply that the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional n * ... * n grid is at least Omega(n^(d(d-k)/(d-1)-epsilon)) and at most O(n^(d(d-k)/(d-1))), where epsilon &gt; 0 is an arbitrarily small constant. This nearly settles a problem mentioned in the book of Brass, Moser, and Pach. We also find tight bounds for the minimum number of k-dimensional affine subspaces needed to cover the intersection of Lambda with K. We use these new results to improve the best known lower bound for the maximum number of point-hyperplane incidences by Brass and Knauer. For d &gt; =3 and epsilon in (0,1), we show that there is an integer r=r(d,epsilon) such that for all positive integers n, m the following statement is true. There is a set of n points in R^d and an arrangement of m hyperplanes in R^d with no K_(r,r) in their incidence graph and with at least Omega((mn)^(1-(2d+3)/((d+2)(d+3)) - epsilon)) incidences if d is odd and Omega((mn)^(1-(2d^2+d-2)/((d+2)(d^2+2d-2)) - epsilon)) incidences if d is even.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA14-14179S" target="_blank" >GA14-14179S: Algorithmic, structural and complexity aspects of configurations in the plane</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    33rd International Symposium on Computational Geometry (SoCG 2017)

  • ISBN

    978-3-95977-038-5

  • ISSN

    1868-8969

  • e-ISSN

    neuvedeno

  • Number of pages

    16

  • Pages from-to

    1-16

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Brisbane

  • Event date

    Jul 4, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article