All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Operator estimates for the Neumann sieve problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00570282" target="_blank" >RIV/61389005:_____/23:00570282 - isvavai.cz</a>

  • Alternative codes found

    RIV/62690094:18470/23:50020247

  • Result on the web

    <a href="https://doi.org/10.1007/s10231-023-01308-z" target="_blank" >https://doi.org/10.1007/s10231-023-01308-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10231-023-01308-z" target="_blank" >10.1007/s10231-023-01308-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Operator estimates for the Neumann sieve problem

  • Original language description

    Let omega be a domain in R-n, gamma be a hyperplane intersecting omega, epsilon > 0 be a small parameter, and D-k,D-epsilon,D- k = 1, 2, 3 ... be a family of small holes in gamma n omega, when is an element of -> 0, the number of holes tends to infinity, while their diameters tends to zero. Let AE be the Neumann Laplacian in the perforated domain omega(epsilon) = omega gamma(epsilon), where gamma(epsilon) = gamma (UkDk,epsilon) ('sieve'). It is well-known that if the sizes of holes are carefully chosen, A(epsilon) converges in the strong resolvent sense to the Laplacian on omega gamma subject to the so-called delta'-conditions on gamma & cap, omega. In the current work we improve this result: under rather general assumptions on the shapes and locations of the holes we derive estimates on the rate of convergence in terms of L-2 L-2 and L-2 -> H-1 operator norms. In the latter case a special corrector is required.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA22-18739S" target="_blank" >GA22-18739S: Asymptotic and spectral analysis of operators in mathematical physics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annali di Matematica Pura ed Applicata

  • ISSN

    0373-3114

  • e-ISSN

    1618-1891

  • Volume of the periodical

    202

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    36

  • Pages from-to

    1955-1990

  • UT code for WoS article

    000934589900002

  • EID of the result in the Scopus database

    2-s2.0-85147753214