All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Operator estimates for homogenization of the Robin Laplacian in a perforated domain

Result description

Let epsilon > 0 be a small parameter. We consider the domain omega := omega omega epsilon, where omega is an open domain in Rn, and D epsilon is a family of small balls of the radius d epsilon = o(epsilon) distributed periodically with period epsilon. Let ?epsilon be the Laplace operator in ?epsilon subject to the Robin condition partial differential u partial differential n + gamma epsilon u = 0 with gamma epsilon <= 0 on the boundary of the holes and the Dirichlet condition on the exterior boundary. Kaizu (1985, 1989) and Brillard (1988) have shown that, under appropriate assumptions on d epsilon and gamma epsilon, the operator ?epsilon converges in the strong resolvent sense to the sum of the Dirichlet Laplacian in omega and a constant potential. We improve this result deriving estimates on the rate of convergence in terms of L2 -> L2 and L2 -> H1 operator norms. As a byproduct we establish the estimate on the distance between the spectra of the associated operators.(c) 2022 Elsevier Inc. All rights reserved.

Keywords

HomogenizationPerforated domainNorm resolvent convergenceOperator estimatesSpectral convergenceVarying Hilbert spaces

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Operator estimates for homogenization of the Robin Laplacian in a perforated domain

  • Original language description

    Let epsilon > 0 be a small parameter. We consider the domain omega := omega omega epsilon, where omega is an open domain in Rn, and D epsilon is a family of small balls of the radius d epsilon = o(epsilon) distributed periodically with period epsilon. Let ?epsilon be the Laplace operator in ?epsilon subject to the Robin condition partial differential u partial differential n + gamma epsilon u = 0 with gamma epsilon <= 0 on the boundary of the holes and the Dirichlet condition on the exterior boundary. Kaizu (1985, 1989) and Brillard (1988) have shown that, under appropriate assumptions on d epsilon and gamma epsilon, the operator ?epsilon converges in the strong resolvent sense to the sum of the Dirichlet Laplacian in omega and a constant potential. We improve this result deriving estimates on the rate of convergence in terms of L2 -> L2 and L2 -> H1 operator norms. As a byproduct we establish the estimate on the distance between the spectra of the associated operators.(c) 2022 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

    1090-2732

  • Volume of the periodical

    338

  • Issue of the periodical within the volume

    NOV

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    44

  • Pages from-to

    474-517

  • UT code for WoS article

    000859448200002

  • EID of the result in the Scopus database

    2-s2.0-85136559022

Basic information

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Pure mathematics

Year of implementation

2022