Higher groupoid bundles, higher spaces, and self-dual tensor field equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333649" target="_blank" >RIV/00216208:11320/16:10333649 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/prop.201600031" target="_blank" >http://dx.doi.org/10.1002/prop.201600031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/prop.201600031" target="_blank" >10.1002/prop.201600031</a>
Alternative languages
Result language
angličtina
Original language name
Higher groupoid bundles, higher spaces, and self-dual tensor field equations
Original language description
We develop a description of higher gauge theory with higher groupoids as gauge structure from first principles. This approach captures ordinary gauge theories and gauged sigma models as well as their categorifications on a very general class of (higher) spaces comprising presentable differentiable stacks, as e.g. orbifolds. We start off with a self-contained review on simplicial sets as models of (8, 1)-categories. We then discuss principal bundles in terms of simplicial maps and their homotopies. We explain in detail a differentiation procedure, suggested by. Severa, that maps higher groupoids to L-infinity-algebroids. Generalising this procedure, we define connections for higher groupoid bundles. As an application, we obtain six-dimensional superconformal field theories via a Penrose-Ward transform of higher groupoid bundles over a twistor space. This construction reduces the search for non-Abelian self-dual tensor field equations in six dimensions to a search for the appropriate (higher) gauge structure. The treatment aims to be accessible to theoretical physicists.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fortschritte der Physik
ISSN
0015-8208
e-ISSN
—
Volume of the periodical
64
Issue of the periodical within the volume
8-9
Country of publishing house
DE - GERMANY
Number of pages
44
Pages from-to
674-717
UT code for WoS article
000384839200005
EID of the result in the Scopus database
2-s2.0-84979499897