All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Algebraic analysis on scalar generalized Verma modules of Heisenberg parabolic type I.: An-series

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333943" target="_blank" >RIV/00216208:11320/16:10333943 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00031-016-9414-5" target="_blank" >http://dx.doi.org/10.1007/s00031-016-9414-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00031-016-9414-5" target="_blank" >10.1007/s00031-016-9414-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Algebraic analysis on scalar generalized Verma modules of Heisenberg parabolic type I.: An-series

  • Original language description

    In the present article, we combine some techniques in harmonic analysis together with the geometric approach given by modules over sheaves of rings of twisted differential operators ($mcal{D}$-modules), and reformulate the composition series and branching problems for objects in the Bernstein-Gelfand-Gelfand parabolic category $mcal{O}^mfrak{p}$ geometrically realized on certain orbits in the generalized flag manifolds. The general framework is then applied to the scalar generalized Verma modules supported on the closed Schubert cell of the generalized flag manifold $G/P$ for $G=SL(n+2,C)$ and $P$ the Heisenberg parabolic subgroup, and algebraic analysis gives a complete classification of $mfrak{g}'_r$-singular vectors for all $mfrak{g}'_r=mfrak{sl}(n-r+2,C),subset, mfrak{g}=mfrak{sl}(n+2,C)$, $n-r > 2$. A consequence of our results is that we classify $SL(n-r+2,C)$-covariant differential operators acting on homogeneous line bundles over the complexification of the odd dimensional CR-sphere $S^{2n+1}$ and valued in homogeneous vector bundles over the complexification of the CR-subspheres $S^{2(n-r)+1}$.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transformation Groups

  • ISSN

    1083-4362

  • e-ISSN

  • Volume of the periodical

    2016

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    49

  • Pages from-to

    1-49

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85008178941