Relative BGG sequences: I. Algebra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333995" target="_blank" >RIV/00216208:11320/16:10333995 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jalgebra.2016.06.007" target="_blank" >http://dx.doi.org/10.1016/j.jalgebra.2016.06.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2016.06.007" target="_blank" >10.1016/j.jalgebra.2016.06.007</a>
Alternative languages
Result language
angličtina
Original language name
Relative BGG sequences: I. Algebra
Original language description
We develop a relative version of Kostant's harmonic theory and use this to prove a relative version of Kostant's theorem on Lie algebra (co)homology. These are associated to two nested parabolic subalgebras in a semisimple Lie algebra. We show how relative homology groups can be used to realize representations with lowest weight in one (regular or singular) affine Weyl orbit. In the regular case, we show how all the weights in the orbit can be realized as relative homology groups (with different coefficients). These results are motivated by applications to differential geometry and the construction of invariant differential operators.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
—
Volume of the periodical
463
Issue of the periodical within the volume
October
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
188-210
UT code for WoS article
000380866000010
EID of the result in the Scopus database
2-s2.0-84978160936