On n-thin dense sets in powers of topological spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335015" target="_blank" >RIV/00216208:11320/16:10335015 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.14712/1213-7243.2015.148" target="_blank" >http://dx.doi.org/10.14712/1213-7243.2015.148</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/1213-7243.2015.148" target="_blank" >10.14712/1213-7243.2015.148</a>
Alternative languages
Result language
angličtina
Original language name
On n-thin dense sets in powers of topological spaces
Original language description
A subset of a product of topological spaces is called n-thin if every its two distinct points differ in at least n coordinates. We generalize a construction of Gruenhage, Natkaniec, and Piotrowski, and obtain, under CH, a countable T_3 space X without isolated points such that X^n contains an n-thin dense subset, but X^{n+1} does not contain any n-thin dense subset. We also observe that part of the construction can be carried out under MA.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
—
Volume of the periodical
57
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
10
Pages from-to
73-82
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84963818025