All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lower separation axioms via Borel and Baire algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390725" target="_blank" >RIV/00216208:11320/18:10390725 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lower separation axioms via Borel and Baire algebras

  • Original language description

    Let κ be an infinite regular cardinal. We define a topological space X to be a T _{κ-Borel}-space (resp. a T_{κ-BP}-space) if for every x ELEMENT OF X the singleton {x} belongs to the smallest κ-additive algebra of subsets of X that contains all open sets (and all nowhere dense sets) in X. Each T_1-space is a T_{κ-Borel}-space and each T_{κ-Borel}-space is a T_0-space. On the other hand, T_{κ-BP}-spaces need not be T_0-spaces. We prove that a topological space X is a T_{κ-Borel}-space (resp. a T_{κ-BP}-space) if and only if for each point x ELEMENT OF X the singleton {x} is the intersection of a closed set and a G_{&lt;κ}-set in X (resp. {x} is either nowhere dense or a G_{&lt;κ}-set in X). Also we present simple examples distinguishing the separation axioms T_{κ-Borel} and T_{κ-BP} for various infinite cardinals κ, and we relate the axioms to several known notions, which results in a quite regular two-dimensional diagram of lower separation axioms.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Serdica Mathematical Journal

  • ISSN

    1310-6600

  • e-ISSN

  • Volume of the periodical

    2018

  • Issue of the periodical within the volume

    44

  • Country of publishing house

    BG - BULGARIA

  • Number of pages

    22

  • Pages from-to

    155-176

  • UT code for WoS article

  • EID of the result in the Scopus database