All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On a Space of Besicovitch Functions

Result description

Let C([0,1]) be the set of all continuous functions mapping the unit interval [0,1] into itself, equipped by the metric rho of uniform convergence (and the induced topology tau). A function fin C([0,1]) is called Besicovitch if it has nowhere one-sided derivative (finite of infinite). For the Lebesgue measure lambda we define the set B(lambda)subset C([0,1]) by B(lambda)={fvert~forall~text{Borel}~Asubset [0,1]colon~lambda(A)=lambda(f^{-1}(A))text{ and }ftext{ is Besicovitch}}. We construct a set Xsubset B(lambda) such that the space (X,tauvert X) is homemorphic to the product topological space (prod_{i=0}^{infty}[0,1),mu).

Keywords

Besicovitch functionfunction preserving Lebesgue measure

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    On a Space of Besicovitch Functions

  • Original language description

    Let C([0,1]) be the set of all continuous functions mapping the unit interval [0,1] into itself, equipped by the metric rho of uniform convergence (and the induced topology tau). A function fin C([0,1]) is called Besicovitch if it has nowhere one-sided derivative (finite of infinite). For the Lebesgue measure lambda we define the set B(lambda)subset C([0,1]) by B(lambda)={fvert~forall~text{Borel}~Asubset [0,1]colon~lambda(A)=lambda(f^{-1}(A))text{ and }ftext{ is Besicovitch}}. We construct a set Xsubset B(lambda) such that the space (X,tauvert X) is homemorphic to the product topological space (prod_{i=0}^{infty}[0,1),mu).

  • Czech name

    O prostoru Besikovičových funkcí

  • Czech description

    V článku je zkonstruován podprostor X prostoru C([0,1]) s vlastnostmi:1) X obsahuje Besikovičovy funkce, 2) každá funkce z X zachovává Lebesgueovu míru, 3) X je homeomorfní s prostorem [0,1]^{alef_0}.

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Real Analysis Exchange

  • ISSN

    0147-1937

  • e-ISSN

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    173-182

  • UT code for WoS article

  • EID of the result in the Scopus database

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

BA - General mathematics

Year of implementation

2005