Infinite Dimensional Banach Space of Besicovitch Functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F07%3A00139626" target="_blank" >RIV/68407700:21110/07:00139626 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Infinite Dimensional Banach Space of Besicovitch Functions
Original language description
Let C([0,1]) be the set of all continuous functions mapping the unit interval [0,1] into R. A function f from C([0,1]) is called Besicovitch if it has nowhere one-sided derivative (finite of infinite). We construct a subset B of C([0,1]) such that B is an infinite dimensional Banach (sub)space in C([0,1]) and each nonzero element of B is a Besicovitch function.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Real Analysis Exchange
ISSN
0147-1937
e-ISSN
—
Volume of the periodical
32
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—