Operator Machines on Directed Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00352530" target="_blank" >RIV/67985840:_____/10:00352530 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Operator Machines on Directed Graphs
Original language description
We show that if an infinite-dimensional Banach space X has a symmetric basis then there exists a bounded, linear operator R : X -> X such that the set A = {x is an element of X : parallel to R(n)x parallel to -> infinity} is non-empty and nowhere norm-dense in X. Moreover, if x is an element of X/A then some subsequence of (R-n x)(n=1)(infinity) converges weakly to x. This answers in the negative a recent conjecture of Prajitura. The result can be extended to any Banach space containing an infinite-dimensional, complemented subspace with a symmetric basis; in particular, all 'classical' Banach spaces admit such an operator.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190801" target="_blank" >IAA100190801: Smoothness in Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Integral Equations and Operator Theory
ISSN
0378-620X
e-ISSN
—
Volume of the periodical
67
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
—
UT code for WoS article
000277097100002
EID of the result in the Scopus database
—