Henstock-Kurzweil integral on BV sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335033" target="_blank" >RIV/00216208:11320/16:10335033 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.21136/MB.2016.16" target="_blank" >http://dx.doi.org/10.21136/MB.2016.16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/MB.2016.16" target="_blank" >10.21136/MB.2016.16</a>
Alternative languages
Result language
angličtina
Original language name
Henstock-Kurzweil integral on BV sets
Original language description
The generalized Riemann integral of Pfeffer (1991) is defined on all bounded BV subsets of R n , but it is additive only with respect to pairs of disjoint sets whose closures intersect in a set of σ-finite Hausdorff measure of codimension one. Imposing a stronger regularity condition on partitions of BV sets, we define a Riemann-type integral which satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral is lipeomorphism-invariant and closed with respect to the formation of improper integrals. Its definition in R coincides with the Henstock-Kurzweil definition of the Denjoy-Perron integral.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-08218S" target="_blank" >GA15-08218S: Theory of real functions and its applications in geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Bohemica
ISSN
0862-7959
e-ISSN
—
Volume of the periodical
141
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
21
Pages from-to
217-237
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84976402596