Glimm’s method and density of wild data for the Euler system of gas dynamics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00582709" target="_blank" >RIV/67985840:_____/24:00582709 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1088/1361-6544/ad1cbd" target="_blank" >https://doi.org/10.1088/1361-6544/ad1cbd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6544/ad1cbd" target="_blank" >10.1088/1361-6544/ad1cbd</a>
Alternative languages
Result language
angličtina
Original language name
Glimm’s method and density of wild data for the Euler system of gas dynamics
Original language description
We adapt Glimm’s approximation method to the framework of convex integration to show density of wild data for the (complete) Euler system of gas dynamics. The desired infinite family of entropy admissible solutions emanating from the same initial data is obtained via convex integration of suitable Riemann problems pasted with local smooth solutions. In addition, the wild data belong to BV class.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-02411S" target="_blank" >GA21-02411S: Solving ill posed problems in the dynamics of compressible fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinearity
ISSN
0951-7715
e-ISSN
1361-6544
Volume of the periodical
37
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
035005
UT code for WoS article
001149619800001
EID of the result in the Scopus database
2-s2.0-85183522157