Non-universal families of separable Banach spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335062" target="_blank" >RIV/00216208:11320/16:10335062 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4064/sm8380-4-2016" target="_blank" >http://dx.doi.org/10.4064/sm8380-4-2016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/sm8380-4-2016" target="_blank" >10.4064/sm8380-4-2016</a>
Alternative languages
Result language
angličtina
Original language name
Non-universal families of separable Banach spaces
Original language description
We prove that if C is a family of separable Banach spaces which is analytic with respect to the Effros Borel structure and no X is an element of C is isometrically universal for all separable Banach spaces, then there exists a separable Banach space with a monotone Schauder basis which is isometrically universal for C but not for all separable Banach spaces. We also establish an analogous result for the class of strictly convex spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP14-04892P" target="_blank" >GP14-04892P: Descriptive set theory and universality questions in Banach space theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Mathematica
ISSN
0039-3223
e-ISSN
—
Volume of the periodical
233
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
16
Pages from-to
153-168
UT code for WoS article
000376610400004
EID of the result in the Scopus database
2-s2.0-84973532327