Reduction theorems for Sobolev embeddings into the spaces of Holder, Morrey and Campanato type
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10372610" target="_blank" >RIV/00216208:11320/16:10372610 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201500043" target="_blank" >http://dx.doi.org/10.1002/mana.201500043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201500043" target="_blank" >10.1002/mana.201500043</a>
Alternative languages
Result language
angličtina
Original language name
Reduction theorems for Sobolev embeddings into the spaces of Holder, Morrey and Campanato type
Original language description
Let X be a rearrangement-invariant Banach function space on Q where Q is a cube in R-n and let V-1 X( Q) be the Sobolev space of real-valued weakly differentiable functions f satisfying vertical bar del f vertical bar is an element of X(Q). We establish a reduction theorem for an embedding of the Sobolev space V-1 X( Q) into spaces of Campanato, Money and Holder type. As a result we obtain a new characterization of such embeddings in terms of boundedness of a certain one-dimensional integral operator on representation spaces. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-14743S" target="_blank" >GA13-14743S: Function spaces, weighted inequalities and interpolation II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
289
Issue of the periodical within the volume
13
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
1626-1635
UT code for WoS article
000384865300005
EID of the result in the Scopus database
2-s2.0-84955113381