All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Electrochemical Ion Transfer with Thin Films of Poly(3-octylthiophene)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10425343" target="_blank" >RIV/00216208:11320/16:10425343 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H0PKpQgd5t" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H0PKpQgd5t</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.analchem.6b01800" target="_blank" >10.1021/acs.analchem.6b01800</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Electrochemical Ion Transfer with Thin Films of Poly(3-octylthiophene)

  • Original language description

    We report on the limiting conditions for ion-transfer voltammetry between an ion-exchanger doped and plasticized poly(vinyl chloride) (PVC) membrane and an electrolyte solution that was triggered via the oxidation of a poly(3-octylthiophene) (POT) solid-contact (SC), which was unexpectedly related to the thickness of the POT SC. An electropolymerized 60 nm thick film of POT coated with a plasticized PVC membrane exhibited a significant sodium transfer voltammetric signal whereas a thicker film (180 nm) did not display a measurable level of ion transfer due to a lack of oxidation of thick POT beneath the membrane film. In contrast, this peculiar phenomenon was not observed when the POT film was in direct contact with an organic solvent-based electrolyte. This evidence is indicative of three key points: (0 the coated membrane imposes a degree of rigidity to the system, which restricts the swelling of the POT film and its concomitant p-doping; (ii) this phenomenon is exacerbated with thicker POT films due to an initial morphology (rougher comprising a network of large POT nanoparticles), which gives rise to a diminished surface area and electrochemical reactivity in the POT SC; (iii) the rate of sodium transfer is higher with a thin POT film due to a smoother surface morphology made up of a network of smaller POT nanopartides with an increased surface area and electrochemical reactivity. A variety of techniques including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry, scanning electron microscopy (SEM), atomic force microscopy (APM), and synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS) were used to elucidate the mechanism of the POT thickness/POT surface roughness dependency on the electrochemical reactivity of the PVC/POT SC system.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Analytical Chemistry

  • ISSN

    0003-2700

  • e-ISSN

  • Volume of the periodical

    88

  • Issue of the periodical within the volume

    13

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    6939-6946

  • UT code for WoS article

    000379363800043

  • EID of the result in the Scopus database

    2-s2.0-84979021590