Generalized Gray codes with prescribed ends
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10336924" target="_blank" >RIV/00216208:11320/17:10336924 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2017.01.010" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2017.01.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2017.01.010" target="_blank" >10.1016/j.tcs.2017.01.010</a>
Alternative languages
Result language
angličtina
Original language name
Generalized Gray codes with prescribed ends
Original language description
An n-bit Gray code is a sequence of all n-bit strings such that consecutive strings differ in a single bit. It is well-known that given such strings α, β, an n-bit Gray code between α and β exists iff the Hamming distance d(α,β) of α and β is odd. We generalize this classical result to k pairwise disjoint pairs of n-bit strings αi,βi : if d(αi,βi) is odd for all i and k <n, then the set of all n-bit vectors can be partitioned into k sequences such that the i-th sequence leads from αi to βi and consecutive vectors differ in a single bit. This holds for every n > 1 with one exception in the case that n = k + 1 = 4. Our result is optimal in the sense that for every n > 2 there are n pairwise disjoint pairs of n-bit strings αi,βi with d(αi , βi ) odd for which such sequences do not exist.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA14-10799S" target="_blank" >GA14-10799S: Hybercubic, graph and hypergraph structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
668
Issue of the periodical within the volume
March
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
25
Pages from-to
70-94
UT code for WoS article
000400224500005
EID of the result in the Scopus database
2-s2.0-85011347260