All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sparse Kneser graphs are Hamiltonian

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435478" target="_blank" >RIV/00216208:11320/21:10435478 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9NehUl4amW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9NehUl4amW</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/jlms.12406" target="_blank" >10.1112/jlms.12406</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sparse Kneser graphs are Hamiltonian

  • Original language description

    For integers k &gt; 1 and n &gt; 2k+1, the Kneser graph K(n,k) is the graph whose vertices are the k-element subsets of {1,...,n} and whose edges connect pairs of subsets that are disjoint. The Kneser graphs of the form K(2k+1,k) are also known as the odd graphs. We settle an old problem due to Meredith, Lloyd, and Biggs from the 1970s, proving that for every k &gt; 3, the odd graph K(2k+1,k) has a Hamilton cycle. This and a known conditional result due to Johnson imply that all Kneser graphs of the form K(2k+2a,k) with k &gt; 3 and a &gt; 0 have a Hamilton cycle. We also prove that K(2k+1,k) has at least 22k-6 distinct Hamilton cycles for k &gt; 6. Our proofs are based on a reduction of the Hamiltonicity problem in the odd graph to the problem of finding a spanning tree in a suitably defined hypergraph on Dyck words.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-08554S" target="_blank" >GA19-08554S: Structures and algorithms in highly symmetric graphs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the London Mathematical Society

  • ISSN

    0024-6107

  • e-ISSN

  • Volume of the periodical

    103

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    23

  • Pages from-to

    1253-1275

  • UT code for WoS article

    000597234900001

  • EID of the result in the Scopus database

    2-s2.0-85097370090