Sparse Kneser graphs are Hamiltonian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435478" target="_blank" >RIV/00216208:11320/21:10435478 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9NehUl4amW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9NehUl4amW</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms.12406" target="_blank" >10.1112/jlms.12406</a>
Alternative languages
Result language
angličtina
Original language name
Sparse Kneser graphs are Hamiltonian
Original language description
For integers k > 1 and n > 2k+1, the Kneser graph K(n,k) is the graph whose vertices are the k-element subsets of {1,...,n} and whose edges connect pairs of subsets that are disjoint. The Kneser graphs of the form K(2k+1,k) are also known as the odd graphs. We settle an old problem due to Meredith, Lloyd, and Biggs from the 1970s, proving that for every k > 3, the odd graph K(2k+1,k) has a Hamilton cycle. This and a known conditional result due to Johnson imply that all Kneser graphs of the form K(2k+2a,k) with k > 3 and a > 0 have a Hamilton cycle. We also prove that K(2k+1,k) has at least 22k-6 distinct Hamilton cycles for k > 6. Our proofs are based on a reduction of the Hamiltonicity problem in the odd graph to the problem of finding a spanning tree in a suitably defined hypergraph on Dyck words.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-08554S" target="_blank" >GA19-08554S: Structures and algorithms in highly symmetric graphs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the London Mathematical Society
ISSN
0024-6107
e-ISSN
—
Volume of the periodical
103
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
23
Pages from-to
1253-1275
UT code for WoS article
000597234900001
EID of the result in the Scopus database
2-s2.0-85097370090