All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Trimming and gluing gray codes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367480" target="_blank" >RIV/00216208:11320/17:10367480 - isvavai.cz</a>

  • Result on the web

    <a href="http://drops.dagstuhl.de/opus/volltexte/2017/6993" target="_blank" >http://drops.dagstuhl.de/opus/volltexte/2017/6993</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2017.40" target="_blank" >10.4230/LIPIcs.STACS.2017.40</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Trimming and gluing gray codes

  • Original language description

    We consider the algorithmic problem of generating each subset of [n]:={1,2,...,n} whose size is in some interval [k,l], 0 &lt;= k &lt;= l &lt;= n, exactly once (cyclically) by repeatedly adding or removing a single element, or by exchanging a single element. For k=0 and l=n this is the classical problem of generating all 2^n subsets of [n] by element additions/removals, and for k=l this is the classical problem of generating all n over k subsets of [n] by element exchanges. We prove the existence of such cyclic minimum-change enumerations for a large range of values n, k, and l, improving upon and generalizing several previous results. For all these existential results we provide optimal algorithms to compute the corresponding Gray codes in constant time O(1) per generated set and space O(n). Rephrased in terms of graph theory, our results establish the existence of (almost) Hamilton cycles in the subgraph of the n-dimensional cube Q_n induced by all levels [k,l]. We reduce all remaining open cases to a generalized version of the middle levels conjecture, which asserts that the subgraph of Q_(2k+1) induced by all levels [k-c,k+1+c], c in {0, 1, ... , k}, has a Hamilton cycle. We also prove an approximate version of this conjecture, showing that this graph has a cycle that visits a (1-o(1))-fraction of all vertices.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA14-10799S" target="_blank" >GA14-10799S: Hybercubic, graph and hypergraph structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-028-6

  • ISSN

    1868-8969

  • e-ISSN

    neuvedeno

  • Number of pages

    14

  • Pages from-to

    1-14

  • Publisher name

    Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Hannover

  • Event date

    Mar 8, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article