All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adjoint-based anisotropic mesh adaptation for Discontinuous Galerkin Methods Using a Continuous Mesh Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10360273" target="_blank" >RIV/00216208:11320/17:10360273 - isvavai.cz</a>

  • Result on the web

    <a href="https://arc.aiaa.org/doi/abs/10.2514/6.2017-3100" target="_blank" >https://arc.aiaa.org/doi/abs/10.2514/6.2017-3100</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2514/6.2017-3100" target="_blank" >10.2514/6.2017-3100</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adjoint-based anisotropic mesh adaptation for Discontinuous Galerkin Methods Using a Continuous Mesh Model

  • Original language description

    In this paper we propose an adjoint-based mesh optimization method for conservation laws, which may be used with any numerical method based on piecewise polynomials. The method uses a continuous mesh framework, where a global optimization scheme was formulated with respect to the error in the numerical solution, measured in any $L^q$ norm. The novelty of the present work is the extension to more general optimization targets. Here, any solution-dependent functional, which is compatible with an adjoint equation, may be the target of the continuous-mesh optimization. We present the rationale behind the formulation of the optimization problem, with particular emphasis on the continuous mesh model, and the relevant adjoint-based error estimate. We also present numerical results, demonstrating the viability of the scheme.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    23rd AIAA Computational Fluid Dynamics Conference

  • ISBN

    978-1-62410-506-7

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    19

  • Pages from-to

    1-19

  • Publisher name

    American Institute of Aeronautics and Astronautics Inc, AIAA

  • Place of publication

    Denver,USA

  • Event location

    Denver

  • Event date

    Jun 5, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article