All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adjoint-based anisotropic hp-adaptation for discontinuous Galerkin methods using a continuous mesh model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419205" target="_blank" >RIV/00216208:11320/20:10419205 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uz_0DqZa8e" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uz_0DqZa8e</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcp.2020.109321" target="_blank" >10.1016/j.jcp.2020.109321</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adjoint-based anisotropic hp-adaptation for discontinuous Galerkin methods using a continuous mesh model

  • Original language description

    In this paper we propose an adjoint-based hp-adaptation method for conservation laws, and corresponding numerical schemes based on piecewise polynomial approximation spaces. The method uses a continuous mesh framework, similar to that proposed in [1], where a global optimization scheme was formulated with respect to the error in the numerical solution, measured in any L-q norm. The novelty of the present work is the extension to more general optimization targets. Here, any solution-dependent functional, which is compatible with an adjoint equation, may be the target of the continuous-mesh optimization. We present the rationale behind the formulation of the optimization problem, with particular emphasis on the continuous mesh model, and the relevant adjoint-based error estimate. Additionally we combine the adjoint-based error estimates with the polynomial optimization strategy from [2] to present a complete hp-adaptation method which shows exponential convergence in the target function. The h-only mesh adaptation strategy of this work has been presented as a conference proceeding earlier [3]. Numerical experiments are carried out to demonstrate the viability of the scheme. (C) 2020 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Computational Physics

  • ISSN

    0021-9991

  • e-ISSN

  • Volume of the periodical

    409

  • Issue of the periodical within the volume

    May 15, 2020

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    109321

  • UT code for WoS article

    000522726000003

  • EID of the result in the Scopus database

    2-s2.0-85080059252