Volumes and bulk densities of forty asteroids from ADAM shape modeling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10360860" target="_blank" >RIV/00216208:11320/17:10360860 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1051/0004-6361/201629956" target="_blank" >http://dx.doi.org/10.1051/0004-6361/201629956</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/201629956" target="_blank" >10.1051/0004-6361/201629956</a>
Alternative languages
Result language
angličtina
Original language name
Volumes and bulk densities of forty asteroids from ADAM shape modeling
Original language description
Context. Disk-integrated photometric data of asteroids do not contain accurate information on shape details or size scale. Additional data such as disk-resolved images or stellar occultation measurements further constrain asteroid shapes and allow size estimates. Aims. We aim to use all the available disk-resolved images of approximately forty asteroids obtained by the Near-InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope together with the disk-integrated photometry and stellar occultation measurements to determine their volumes. We can then use the volume, in combination with the known mass, to derive the bulk density. Methods. We downloaded and processed all the asteroid disk-resolved images obtained by the Nirc2 that are available in the Keck Observatory Archive (KOA). We combined optical disk-integrated data and stellar occultation profiles with the disk- resolved images and use the All-Data Asteroid Modeling (ADAM) algorithm for the shape and size modeling. Our approach provides constraints on the expected uncertainty in the volume and size as well. Results. We present shape models and volume for 41 asteroids. For 35 of these asteroids, the knowledge of their mass estimates from the literature allowed us to derive their bulk densities. We see a clear trend of lower bulk densities for primitive objects (C-complex) and higher bulk densities for S-complex asteroids. The range of densities in the X-complex is large, suggesting various compositions. We also identified a few objects with rather peculiar bulk densities, which is likely a hint of their poor mass estimates. Asteroid masses determined from the Gaia astrometric observations should further refine most of the density estimates.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/GA15-04816S" target="_blank" >GA15-04816S: A big picture of the main asteroid belt - physical properties of asteroids derived by inversion of optical and infrared photometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy & Astrophysics [online]
ISSN
1432-0746
e-ISSN
—
Volume of the periodical
601
Issue of the periodical within the volume
05
Country of publishing house
FR - FRANCE
Number of pages
41
Pages from-to
—
UT code for WoS article
000402313500114
EID of the result in the Scopus database
—