All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Gauss quadrature for quasi-definite linear functionals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10360928" target="_blank" >RIV/00216208:11320/17:10360928 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1093/imanum/drw032" target="_blank" >http://dx.doi.org/10.1093/imanum/drw032</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/imanum/drw032" target="_blank" >10.1093/imanum/drw032</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Gauss quadrature for quasi-definite linear functionals

  • Original language description

    Gauss quadrature can be formulated as a method for approximating positive-definite linear functionals. Its mathematical context is extremely rich, with orthogonal polynomials, continued fractions and Padé approximation on one (functional analytic or approximation theory) side, and the method of moments,(real) Jacobi matrices, spectral decompositions and the Lanczos method on the other (algebraic) side. The quadrature concept can therefore be developed in many different ways. After a brief review of the mathematical interconnections in the positive-definite case, this paper will investigate the question of a meaningful generalization of Gauss quadrature for approximation of linear functionals that are not positive definite. For that purpose we use the algebraic approach, and, in order to build up the main ideas, recall the existing results presented in literature. Along the way we refer to the associated results expressed through the language of rational approximations. As the main result, we present the form of generalized Gauss quadrature and prove that the quasi-definiteness of the underlying linear functional represents a necessary and sufficient condition for its existence.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IMA Journal of Numerical Analysis

  • ISSN

    0272-4979

  • e-ISSN

  • Volume of the periodical

    37

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    28

  • Pages from-to

    1468-1495

  • UT code for WoS article

    000405416900015

  • EID of the result in the Scopus database

    2-s2.0-85027050632