All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Gauss quadrature for general linear functionals, Lanczos algorithm, and minimal partial realization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438325" target="_blank" >RIV/00216208:11320/21:10438325 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tU3ogcTO0f" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=tU3ogcTO0f</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11075-020-01052-y" target="_blank" >10.1007/s11075-020-01052-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Gauss quadrature for general linear functionals, Lanczos algorithm, and minimal partial realization

  • Original language description

    The concept of Gauss quadrature can be generalized to approximate linear functionals with complex moments. Following the existing literature, this survey will revisit such generalization. It is well known that the (classical) Gauss quadrature for positive definite linear functionals is connected with orthogonal polynomials, and with the (Hermitian) Lanczos algorithm. Analogously, the Gauss quadrature for linear functionals is connected with formal orthogonal polynomials, and with the non-Hermitian Lanczos algorithm with look-ahead strategy; moreover, it is related to the minimal partial realization problem. We will review these connections pointing out the relationships between several results established independently in related contexts. Original proofs of the Mismatch Theorem and of the Matching Moment Property are given by using the properties of formal orthogonal polynomials and the Gauss quadrature for linear functionals.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Numerical Algorithms

  • ISSN

    1017-1398

  • e-ISSN

  • Volume of the periodical

    88

  • Issue of the periodical within the volume

    Říjen

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    32

  • Pages from-to

    647-678

  • UT code for WoS article

    000607330500001

  • EID of the result in the Scopus database

    2-s2.0-85099372864