Triangle-free graphs of tree-width t are ceil((t+3)/2)-colorable
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10364983" target="_blank" >RIV/00216208:11320/17:10364983 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0195669817300902" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0195669817300902</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2017.06.016" target="_blank" >10.1016/j.ejc.2017.06.016</a>
Alternative languages
Result language
angličtina
Original language name
Triangle-free graphs of tree-width t are ceil((t+3)/2)-colorable
Original language description
We prove that every triangle-free graph of tree-width t has chromatic number at most ceil((t+3)/2), and demonstrate that this bound is tight. The argument also establishes a connection between coloring graphs of tree-width t and on-line coloring of graphs of path-width t.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-04611S" target="_blank" >GA17-04611S: Ramsey-like aspects of graph coloring</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
66
Issue of the periodical within the volume
december
Country of publishing house
GB - UNITED KINGDOM
Number of pages
6
Pages from-to
95-100
UT code for WoS article
000411777600009
EID of the result in the Scopus database
—