Sparse Graphs of Twin-width 2 Have Bounded Tree-width
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00131580" target="_blank" >RIV/00216224:14330/23:00131580 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPICS.ISAAC.2023.11" target="_blank" >http://dx.doi.org/10.4230/LIPICS.ISAAC.2023.11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPICS.ISAAC.2023.11" target="_blank" >10.4230/LIPICS.ISAAC.2023.11</a>
Alternative languages
Result language
angličtina
Original language name
Sparse Graphs of Twin-width 2 Have Bounded Tree-width
Original language description
Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices, and it can be seen as widely generalizing several other traditional structural parameters. Having such a sequence at hand allows to solve many otherwise hard problems efficiently. Our paper focuses on a comparison of twin-width to the more traditional tree-width on sparse graphs. Namely, we prove that if a graph G of twin-width at most 2 contains no K_{t,t} subgraph for some integer t, then the tree-width of G is bounded by a polynomial function of t. As a consequence, for any sparse graph class C we obtain a polynomial time algorithm which for any input graph G ∈ C either outputs a contraction sequence of width at most c (where c depends only on C), or correctly outputs that G has twin-width more than 2. On the other hand, we present an easy example of a graph class of twin-width 3 with unbounded tree-width, showing that our result cannot be extended to higher values of twin-width.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ISAAC 2023
ISBN
9783959772891
ISSN
1868-8969
e-ISSN
—
Number of pages
13
Pages from-to
„11:1“-„11:13“
Publisher name
Schloss Dagstuhl -- Leibniz-Zentrum f{"u}r Informatik
Place of publication
Dagstuhl, Germany
Event location
Kyoto, Japan
Event date
Jan 1, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—