Twin-width of graphs on surfaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00137364" target="_blank" >RIV/00216224:14330/24:00137364 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Twin-width of graphs on surfaces
Original language description
Twin-width is a width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS'20, JACM'22], which has many structural and algorithmic applications. Hliněný and Jedelský [ICALP'23] showed that every planar graph has twin-width at most 8. We prove that the twin-width of every graph embeddable in a surface of Euler genus g is at most 18√{47g} + O(1), which is asymptotically best possible as it asymptotically differs from the lower bound by a constant multiplicative factor. Our proof also yields a quadratic time algorithm to find a corresponding contraction sequence. To prove the upper bound on twin-width of graphs embeddable in surfaces, we provide a stronger version of the Product Structure Theorem for graphs of Euler genus g that asserts that every such graph is a subgraph of the strong product of a path and a graph with a tree-decomposition with all bags of size at most eight with a single exceptional bag of size max{6, 32g-37}.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)
ISBN
9783959773355
ISSN
1868-8969
e-ISSN
—
Number of pages
15
Pages from-to
„66:1“-„66:15“
Publisher name
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl, Germany
Event location
Dagstuhl, Germany
Event date
Jan 1, 2024
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—