TWIN-WIDTH AND PERMUTATIONS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493121" target="_blank" >RIV/00216208:11320/24:10493121 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p52etS2.O_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p52etS2.O_</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.46298/LMCS-20(3:4)2024" target="_blank" >10.46298/LMCS-20(3:4)2024</a>
Alternative languages
Result language
angličtina
Original language name
TWIN-WIDTH AND PERMUTATIONS
Original language description
Inspired by a width invariant on permutations defined by Guillemot and Marx, Bonnet, Kim, Thomasse, and Watrigant introduced the twin-width of graphs, which is a parameter describing its structural complexity. This invariant has been further extended to binary structures, in several (basically equivalent) ways. We prove that a class of binary relational structures (that is: edge-colored partially directed graphs) has bounded twin-width if and only if it is a first-order transduction of a proper permutation class. As a by-product, we show that every class with bounded twin-width contains at most 2^(O(n)) pairwise non-isomorphic n-vertex graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Logical Methods in Computer Science
ISSN
1860-5974
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
25
Pages from-to
1-25
UT code for WoS article
001265985000001
EID of the result in the Scopus database
2-s2.0-85199658445