All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analyzing Mathematical Content to Detect Academic Plagiarism

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366347" target="_blank" >RIV/00216208:11320/17:10366347 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1145/3132847.3133144" target="_blank" >http://dx.doi.org/10.1145/3132847.3133144</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3132847.3133144" target="_blank" >10.1145/3132847.3133144</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analyzing Mathematical Content to Detect Academic Plagiarism

  • Original language description

    This paper presents, to our knowledge, the first study on analyzing mathematical expressions to detect academic plagiarism. We make the following contributions. First, we investigate confirmed cases of plagiarism to categorize the similarities of mathematical content commonly found in plagiarized publications. From this investigation, we derive possible feature selection and feature comparison strategies for developing math-based detection approaches and a ground truth for our experiments. Second, we create a test collection by embedding confirmed cases of plagiarism into the NTCIR-11 MathIR Task dataset, which contains approx. 60 million mathematical expressions in 105,120 documents from arXiv.org. Third, we develop a first math-based detection approach by implementing and evaluating different feature comparison approaches using an open source parallel data processing pipeline built using the Apache Flink framework. The best performing approach identifies all but two of our real-world test cases at the top rank and achieves a mean reciprocal rank of 0.86. The results show that mathematical expressions are promising text-independent features to identify academic plagiarism in large collections. To facilitate future research on math-based plagiarism detection, we make our source code and data available.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-22224S" target="_blank" >GA17-22224S: User preference analytics in multimedia exploration models</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2017 ACM on Conference on Information and Knowledge Management

  • ISBN

    978-1-4503-4918-5

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    4

  • Pages from-to

    2211-2214

  • Publisher name

    ACM

  • Place of publication

    New York

  • Event location

    Singapore

  • Event date

    Nov 6, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article