All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Detecting machine-obfuscated plagiarism

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F20%3A43917832" target="_blank" >RIV/62156489:43110/20:43917832 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-43687-2_68" target="_blank" >https://doi.org/10.1007/978-3-030-43687-2_68</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-43687-2_68" target="_blank" >10.1007/978-3-030-43687-2_68</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Detecting machine-obfuscated plagiarism

  • Original language description

    Research on academic integrity has identified online paraphrasing tools as a severe threat to the effectiveness of plagiarism detection systems. To enable the automated identification of machine-paraphrased text, we make three contributions. First, we evaluate the effectiveness of six prominent word embedding models in combination with five classifiers for distinguishing human-written from machine-paraphrased text. The best performing classification approach achieves an accuracy of 99.0% for documents and 83.4% for paragraphs. Second, we show that the best approach outperforms human experts and established plagiarism detection systems for these classification tasks. Third, we provide a Web application that uses the best performing classification approach to indicate whether a text underwent machine-paraphrasing. The data and code of our study are openly available.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    50803 - Information science (social aspects)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Sustainable Digital Communities

  • ISBN

    978-3-030-43686-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    12

  • Pages from-to

    816-827

  • Publisher name

    Springer Switzerland

  • Place of publication

    Cham

  • Event location

    Borås

  • Event date

    Mar 23, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article