Detecting machine-obfuscated plagiarism
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F20%3A43917832" target="_blank" >RIV/62156489:43110/20:43917832 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-43687-2_68" target="_blank" >https://doi.org/10.1007/978-3-030-43687-2_68</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-43687-2_68" target="_blank" >10.1007/978-3-030-43687-2_68</a>
Alternative languages
Result language
angličtina
Original language name
Detecting machine-obfuscated plagiarism
Original language description
Research on academic integrity has identified online paraphrasing tools as a severe threat to the effectiveness of plagiarism detection systems. To enable the automated identification of machine-paraphrased text, we make three contributions. First, we evaluate the effectiveness of six prominent word embedding models in combination with five classifiers for distinguishing human-written from machine-paraphrased text. The best performing classification approach achieves an accuracy of 99.0% for documents and 83.4% for paragraphs. Second, we show that the best approach outperforms human experts and established plagiarism detection systems for these classification tasks. Third, we provide a Web application that uses the best performing classification approach to indicate whether a text underwent machine-paraphrasing. The data and code of our study are openly available.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
50803 - Information science (social aspects)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Sustainable Digital Communities
ISBN
978-3-030-43686-5
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
12
Pages from-to
816-827
Publisher name
Springer Switzerland
Place of publication
Cham
Event location
Borås
Event date
Mar 23, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—