All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Identifying Machine-Paraphrased Plagiarism

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F22%3A43921286" target="_blank" >RIV/62156489:43110/22:43921286 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-96957-8_34" target="_blank" >https://doi.org/10.1007/978-3-030-96957-8_34</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-96957-8_34" target="_blank" >10.1007/978-3-030-96957-8_34</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Identifying Machine-Paraphrased Plagiarism

  • Original language description

    Employing paraphrasing tools to conceal plagiarized text is a severe threat to academic integrity. To enable the detection of machine-paraphrased text, we evaluate the effectiveness of five pre-trained word embedding models combined with machine learning classifiers and state-of-the-art neural language models. We analyze preprints of research papers, graduation theses, and Wikipedia articles, which we paraphrased using different configurations of the tools SpinBot and SpinnerChief. The best performing technique, Longformer, achieved an average F1 score of 80.99% (F1 = 99.68% for SpinBot and F1 = 71.64% for SpinnerChief cases), while human evaluators achieved F1 = 78.4% for SpinBot and F1 = 65.6% for SpinnerChief cases. We show that the automated classification alleviates shortcomings of widely-used text-matching systems, such as Turnitin and PlagScan.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Information for a Better World: Shaping the Global Future

  • ISBN

    978-3-030-96956-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    21

  • Pages from-to

    393-413

  • Publisher name

    Springer International Publishing AG

  • Place of publication

    Cham

  • Event location

    Cham

  • Event date

    Feb 28, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000772157700034