Fractal property of the graph homomorphism order
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366638" target="_blank" >RIV/00216208:11320/17:10366638 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2017.06.017" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2017.06.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2017.06.017" target="_blank" >10.1016/j.ejc.2017.06.017</a>
Alternative languages
Result language
angličtina
Original language name
Fractal property of the graph homomorphism order
Original language description
We show that every interval in the homomorphism order of finite undirected graphs is either universal or a gap. Together with density and universality this "fractal" property contributes to the spectacular properties of the homomorphism order. We first show the fractal property by using Sparse Incomparability Lemma and then by a more involved elementary argument.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
66
Issue of the periodical within the volume
Prosinec
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
101-109
UT code for WoS article
000411777600010
EID of the result in the Scopus database
2-s2.0-85028354608