All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367217" target="_blank" >RIV/00216208:11320/17:10367217 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00033-017-0768-x" target="_blank" >http://dx.doi.org/10.1007/s00033-017-0768-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00033-017-0768-x" target="_blank" >10.1007/s00033-017-0768-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots

  • Original language description

    The response of mechanical systems composed of springs and dashpots to a step input is of eminent interest in the applications. If the system is formed by linear elements, then its response is governed by a system of linear ordinary differential equations. In the linear case, the mathematical method of choice for the analysis of the response is the classical theory of distributions. However, if the system contains nonlinear elements, then the classical theory of distributions is of no use, since it is strictly limited to the linear setting. Consequently, a question arises whether it is even possible or reasonable to study the response of nonlinear systems to step inputs. The answer is positive. A mathematical theory that can handle the challenge is the so-called Colombeau algebra. Building on the abstract result by Prusa and Rajagopal (Int J Non-Linear Mech 81: 207-221, 2016), we show how to use the theory in the analysis of response of nonlinear spring-dashpot and spring-dashpot-mass systems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Zeitschrift für Angewandte Mathematik und Physik

  • ISSN

    0044-2275

  • e-ISSN

  • Volume of the periodical

    68

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000395104800024

  • EID of the result in the Scopus database

    2-s2.0-85010000821