Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367217" target="_blank" >RIV/00216208:11320/17:10367217 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00033-017-0768-x" target="_blank" >http://dx.doi.org/10.1007/s00033-017-0768-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00033-017-0768-x" target="_blank" >10.1007/s00033-017-0768-x</a>
Alternative languages
Result language
angličtina
Original language name
Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots
Original language description
The response of mechanical systems composed of springs and dashpots to a step input is of eminent interest in the applications. If the system is formed by linear elements, then its response is governed by a system of linear ordinary differential equations. In the linear case, the mathematical method of choice for the analysis of the response is the classical theory of distributions. However, if the system contains nonlinear elements, then the classical theory of distributions is of no use, since it is strictly limited to the linear setting. Consequently, a question arises whether it is even possible or reasonable to study the response of nonlinear systems to step inputs. The answer is positive. A mathematical theory that can handle the challenge is the so-called Colombeau algebra. Building on the abstract result by Prusa and Rajagopal (Int J Non-Linear Mech 81: 207-221, 2016), we show how to use the theory in the analysis of response of nonlinear spring-dashpot and spring-dashpot-mass systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Zeitschrift für Angewandte Mathematik und Physik
ISSN
0044-2275
e-ISSN
—
Volume of the periodical
68
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
—
UT code for WoS article
000395104800024
EID of the result in the Scopus database
2-s2.0-85010000821