All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Differential invariants on symplectic spinors in contact projective geometry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367250" target="_blank" >RIV/00216208:11320/17:10367250 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.5001032" target="_blank" >http://dx.doi.org/10.1063/1.5001032</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.5001032" target="_blank" >10.1063/1.5001032</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Differential invariants on symplectic spinors in contact projective geometry

  • Original language description

    We present a complete classification and the construction of Mp(2n+2, R)-equivariant differential operators acting on the principal series representations, associated with the contact projective geometry on RP2n+1 and induced from the irreducible Mp(2n, R)-submodules of the Segal-Shale-Weil representation twisted by a one-parameter family of characters. The proof is based on the classification of homomorphisms of generalized Verma modules for the Segal-Shale-Weil representation twisted by a one-parameter family of characters, together with a generalization of the well-known duality between homomorphisms of generalized Verma modules and equivariant differential operators in the category of inducing smooth admissible modules. Published by AIP Publishing.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    58

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

  • UT code for WoS article

    000412102600004

  • EID of the result in the Scopus database

    2-s2.0-85029178765