Differential invariants on symplectic spinors in contact projective geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367250" target="_blank" >RIV/00216208:11320/17:10367250 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.5001032" target="_blank" >http://dx.doi.org/10.1063/1.5001032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5001032" target="_blank" >10.1063/1.5001032</a>
Alternative languages
Result language
angličtina
Original language name
Differential invariants on symplectic spinors in contact projective geometry
Original language description
We present a complete classification and the construction of Mp(2n+2, R)-equivariant differential operators acting on the principal series representations, associated with the contact projective geometry on RP2n+1 and induced from the irreducible Mp(2n, R)-submodules of the Segal-Shale-Weil representation twisted by a one-parameter family of characters. The proof is based on the classification of homomorphisms of generalized Verma modules for the Segal-Shale-Weil representation twisted by a one-parameter family of characters, together with a generalization of the well-known duality between homomorphisms of generalized Verma modules and equivariant differential operators in the category of inducing smooth admissible modules. Published by AIP Publishing.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
58
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
—
UT code for WoS article
000412102600004
EID of the result in the Scopus database
2-s2.0-85029178765