On the discrete maximum principle for algebraic flux correction schemes with limiters of upwind type
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367723" target="_blank" >RIV/00216208:11320/17:10367723 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-319-67202-1_10" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-67202-1_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-67202-1_10" target="_blank" >10.1007/978-3-319-67202-1_10</a>
Alternative languages
Result language
angličtina
Original language name
On the discrete maximum principle for algebraic flux correction schemes with limiters of upwind type
Original language description
Algebraic flux correction (AFC) schemes are applied to the numerical solution of scalar steady-state convection-diffusion-reaction equations. A general result on the discrete maximum principle (DMP) is established under a weak assumption on the limiters and used for proving the DMP for a particular limiter of upwind type under an assumption that may hold also on non-Delaunay meshes. Moreover, a simple modification of this limiter is proposed that guarantees the validity of the DMP on arbitrary simplicial meshes. Furthermore, it is shown that AFC schemes do not provide sharp approximations of boundary layers if meshes do not respect the convection direction in an appropriate way.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computational and Asymptotic Methods BAIL 2016
ISBN
978-3-319-67201-4
ISSN
1439-7358
e-ISSN
neuvedeno
Number of pages
11
Pages from-to
129-139
Publisher name
Springer
Place of publication
Cham
Event location
Peking
Event date
Aug 15, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—