All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A flag representation of projection functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369107" target="_blank" >RIV/00216208:11320/17:10369107 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.degruyter.com/view/j/advgeom.2017.17.issue-3/advgeom-2017-0022/advgeom-2017-0022.xml" target="_blank" >https://www.degruyter.com/view/j/advgeom.2017.17.issue-3/advgeom-2017-0022/advgeom-2017-0022.xml</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/advgeom-2017-0022" target="_blank" >10.1515/advgeom-2017-0022</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A flag representation of projection functions

  • Original language description

    The kth projection function v(k)(K,.) of a convex body K subset of R-d, d &gt;= 3, is a function on the Grassmannian G(d,k) which measures the k-dimensional volume of the projection of K onto members of G(d,k). For k=1 and k=d-1, simple formulas for the projection functions exist. In particular, v(d-1)(K,.) can be written as a spherical integral with respect to the surface area measure of K. Here, we generalize this result and prove two integral representations for v(k)(K,.), k=1,...,d-1, over flag manifolds. Whereas the first representation generalizes a result of Ambartzumian (1987), but uses a flag measure which is not continuous in K, the second representation is related to a recent flag formula for mixed volumes by Hug, Rataj and Weil (2013) and depends continuously on K.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GAP201%2F10%2F0472" target="_blank" >GAP201/10/0472: Stochastic geometry - inhomogeneity, marking, dynamics and stereology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Geometry

  • ISSN

    1615-715X

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    20

  • Pages from-to

    303-322

  • UT code for WoS article

    000406068000004

  • EID of the result in the Scopus database

    2-s2.0-85026367210