All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Flag representations of mixed volumes and mixed functionals of convex bodies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384458" target="_blank" >RIV/00216208:11320/18:10384458 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jmaa.2017.12.039" target="_blank" >https://doi.org/10.1016/j.jmaa.2017.12.039</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2017.12.039" target="_blank" >10.1016/j.jmaa.2017.12.039</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Flag representations of mixed volumes and mixed functionals of convex bodies

  • Original language description

    Mixed volumes V(K-1, ... , K-d) of convex bodies K-1, ... , K-d in Euclidean space R-d are of central importance in the Brunn-Minkowski theory. Representations for mixed volumes are available in special cases, for example as integrals over the unit sphere with respect to mixed area measures. More generally, in Hug-Rataj-Weil (2013) [11] a formula for V(K[n], M[d - n]), n is an element of {1, ... , d - 1), as a double integral over flag manifolds was established which involved certain flag measures of the convex bodies K and M (and required a general position of the bodies). In the following, we discuss the general case V(K-1[n(1)], ... , K-k[n(k)]), n(1) + ... + n(k) = d, and show a corresponding result involving the flag measures Omega(n1) (K-1;.), ... , Omega(nk) (K-k;.). For this purpose, we first establish a curvature representation of mixed volumes over the normal bundles of the bodies involved. We also obtain a corresponding flag representation for the mixed functionals from translative integral geometry and a local version, for mixed (translative) curvature measures.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA15-08218S" target="_blank" >GA15-08218S: Theory of real functions and its applications in geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

    460

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    32

  • Pages from-to

    745-776

  • UT code for WoS article

    000425705800017

  • EID of the result in the Scopus database

    2-s2.0-85038383908