On maximal tail probability of sums of nonnegative, independent and identically distributed random variables
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369122" target="_blank" >RIV/00216208:11320/17:10369122 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.spl.2017.04.024" target="_blank" >http://dx.doi.org/10.1016/j.spl.2017.04.024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.spl.2017.04.024" target="_blank" >10.1016/j.spl.2017.04.024</a>
Alternative languages
Result language
angličtina
Original language name
On maximal tail probability of sums of nonnegative, independent and identically distributed random variables
Original language description
We consider the problem of finding the optimal upper bound for the tail probability of a sum of k nonnegative, independent and identically distributed random variables with given mean x. For k = 1 the answer is given by Markov's inequality and for k = 2 the solution was found by Hoeffding and Shrikhande in 1955. We show that the solution for k = 3 as well as for general k, provided x <= 1/(2k - 1), follows from recent results of extremal combinatorics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Statistics and Probability Letters
ISSN
0167-7152
e-ISSN
—
Volume of the periodical
129
Issue of the periodical within the volume
October
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
5
Pages from-to
12-16
UT code for WoS article
000410018000002
EID of the result in the Scopus database
—