General Dirichlet Series, Arithmetic Convolution Equations and Laplace Transforms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00326688" target="_blank" >RIV/67985807:_____/09:00326688 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
General Dirichlet Series, Arithmetic Convolution Equations and Laplace Transforms
Original language description
In an earlier paper, we studied solutions g to convolution equations of the form a_d*g^{*d}+a_{d-1}*g^{*(d-1)}+...+a_1*g+a_0=0, where a_0, ..., a_d are given arithmetic functions associated with Dirichlet series which converge on some right half plane, and also g is required to be such a function. In this article, we extend our previous results to multidimensional general Dirichlet series of the form sum_{xin X} f(x) e^{-sx} (s in C^k), where X is an additive subsemigroup of [0,infty)^k. If X is discrete and a certain solvability criterion is satisfied, we determine solutions by an elementary recursive approach, adapting an idea of Feckan. The solution of the general case leads us to a more comprehensive question: Let X be an additive subsemigroup of a pointed, closed convex cone C in R^k. Can we find a complex Radon measure on X whose Laplace transform satisfies a given polynomial equation whose coefficients are Laplace transforms of such measures?
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F07%2F0191" target="_blank" >GA201/07/0191: Algebraic, analytic and combinatorial number theory</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia mathematica
ISSN
0039-3223
e-ISSN
—
Volume of the periodical
193
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
21
Pages from-to
—
UT code for WoS article
000271387800002
EID of the result in the Scopus database
—