Bounded Particular Solution of a Non-homogeneous System of Two Discrete Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151866" target="_blank" >RIV/00216305:26220/24:PU151866 - isvavai.cz</a>
Result on the web
<a href="https://pubs.aip.org/aip/acp/article/3094/1/400001/3297294/Bounded-particular-solution-of-a-non-homogeneous" target="_blank" >https://pubs.aip.org/aip/acp/article/3094/1/400001/3297294/Bounded-particular-solution-of-a-non-homogeneous</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0210989" target="_blank" >10.1063/5.0210989</a>
Alternative languages
Result language
angličtina
Original language name
Bounded Particular Solution of a Non-homogeneous System of Two Discrete Equations
Original language description
In the paper we consider a two-dimensional linear non-homogeneous system of discrete equations y(1)(k + 1) = ay(1)(k) + py(2)(k) + g(1)(k), y(2)(k + 1) = -qy(1)(k) + ay(2)(k) + g(2)(k), where k = k(0), k(0) + 1, ... with k(0) a fixed integer, a, p > 0, q > 0 are real constants and g(i): {k(0), k(0) + 1, ...}. R, i = 1, 2 are given functions. Sufficient conditions are derived guaranteeing the existence of a solution y(k) = (y(1)(k), y(2)(k))(T), k = k(0), k(0) + 1, ... satisfying alpha y(1)(2)(k) + beta y(2)(2)(k) < M, where M, alpha and beta are positive fixed constants such that alpha p = beta q.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings, Volume 3094, Issue 1, 7 June 2024, International Conference of Numerical Analysis and Applied Mathematics 2022, ICNAAM 2022
ISBN
9780735449541
ISSN
0094-243X
e-ISSN
—
Number of pages
4
Pages from-to
„400001-1“-„400001-4“
Publisher name
American Institute of Physics
Place of publication
USA
Event location
Crete, Heraklion, hotel Galaxy
Event date
Sep 11, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001244923000226