Dimension of images of subspaces under Sobolev mappings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127316" target="_blank" >RIV/00216208:11320/12:10127316 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/12:00380503
Result on the web
<a href="http://dx.doi.org/10.1016/j.anihpc.2012.01.002" target="_blank" >http://dx.doi.org/10.1016/j.anihpc.2012.01.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.anihpc.2012.01.002" target="_blank" >10.1016/j.anihpc.2012.01.002</a>
Alternative languages
Result language
angličtina
Original language name
Dimension of images of subspaces under Sobolev mappings
Original language description
Let m< n < alpha < p {= n and let f is an element of W^{1,P}(R^n, R^k) be p-quasicontinuous. We find an optimal value of beta(n, m, p, alpha) such that for H^beta a.e. y is an element of (0, 1)(n-m) the Hausdorff dimension of f((0, 1)^m x {y}) is at mostalpha. We construct an example to show that the value of the optimal 11 does not increase once p goes below the critical case p < alpha.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/KJB100190901" target="_blank" >KJB100190901: Singular and maximal operators on function spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis
ISSN
0294-1449
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
401-411
UT code for WoS article
000305814100005
EID of the result in the Scopus database
—