Dimension of images of subspaces under mappings in Triebel-Lizorkin spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10283097" target="_blank" >RIV/00216208:11320/14:10283097 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201300015" target="_blank" >http://dx.doi.org/10.1002/mana.201300015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201300015" target="_blank" >10.1002/mana.201300015</a>
Alternative languages
Result language
angličtina
Original language name
Dimension of images of subspaces under mappings in Triebel-Lizorkin spaces
Original language description
Let m < alpha < p and let f : R-n -> R-k be a s,p-quasicontinuous representative of a mapping in the Triebel-Lizorkin space F-p,q.(s) We find an optimal value of beta(n, m , p ,alpha , s) such that for H-beta a.e. y is an element of(0,1)(n-m) the Hausdorff dimension of f ((0,1)(m) x {y}) is at most alpha. We construct examples to show that the value of beta is optimal and we show that it does not increase once p goes below the critical value alpha.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LL1203" target="_blank" >LL1203: Properties of functions and mappings in Sobolev spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
287
Issue of the periodical within the volume
7
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
748-763
UT code for WoS article
000335666200003
EID of the result in the Scopus database
—