All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Composition of quasiconformal mappings and functions in Triebel-Lizorkin spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10159509" target="_blank" >RIV/00216208:11320/13:10159509 - isvavai.cz</a>

  • Result on the web

    <a href="http://onlinelibrary.wiley.com/doi/10.1002/mana.201100130/abstract" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/mana.201100130/abstract</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201100130" target="_blank" >10.1002/mana.201100130</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Composition of quasiconformal mappings and functions in Triebel-Lizorkin spaces

  • Original language description

    Let $alpha>0$ and $pin[1,infty)$ satisfy $alpha pleq n$. Suppose that $f:rntorn$ is a $K$-quasiconformal mapping and let $uin W^{alpha,p}(rn)$ have compact support. We find an optimal value of $beta=beta(alpha,K,n)$ such that $ucirc fin W^{beta,p}(rn)$. We also give an answer to the analogous problem where we moreover assume that $u$ is bounded.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    2013

  • Issue of the periodical within the volume

    286

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    10

  • Pages from-to

    669-678

  • UT code for WoS article

    000318295100006

  • EID of the result in the Scopus database