More on the Asymptotic Behaviour of Solutions to a Second Order Emden-Fowler Difference Equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151883" target="_blank" >RIV/00216305:26220/24:PU151883 - isvavai.cz</a>
Result on the web
<a href="https://pubs.aip.org/aip/acp/article/3094/1/400002/3297149/More-on-the-asymptotic-behaviour-of-solutions-to-a" target="_blank" >https://pubs.aip.org/aip/acp/article/3094/1/400002/3297149/More-on-the-asymptotic-behaviour-of-solutions-to-a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0210150" target="_blank" >10.1063/5.0210150</a>
Alternative languages
Result language
angličtina
Original language name
More on the Asymptotic Behaviour of Solutions to a Second Order Emden-Fowler Difference Equation
Original language description
The paper investigates a second order difference equation of the Emden-Fowler type Lambda(2)u(k) +/- k(alpha)u(m)(k) = 0, where k is the independent variable taking values k = k(0), k(0) + 1,... with k(0) a fixed integer, u: {k(0), k(0) + 1, ...} -> R is the dependent variable and.2u(k) is its second-order forward difference. New conditions with respect to parameters m is an element of R, m not equal 1 and alpha is an element of R are found such that the equation admits a solution asymptotically represented by a power function asymptotically equivalent with the exact solution of second-order differential Emden-Fowler equation y ''(x) +/- x(alpha)y(m)(x) = 0.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings, Volume 3094, Issue 1, 7 June 2024, International Conference of Numerical Analysis and Applied Mathematics 2022, ICNAAM 2022
ISBN
9780735449541
ISSN
0094-243X
e-ISSN
—
Number of pages
4
Pages from-to
„400002-1“-„400002-4“
Publisher name
AMER INST PHYSICS
Place of publication
MELVILLE
Event location
Crete, Heraklion, hotel Galaxy
Event date
Sep 11, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001244923000017