Lattice-ordered abelian groups finitely generated as semirings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369297" target="_blank" >RIV/00216208:11320/17:10369297 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Lattice-ordered abelian groups finitely generated as semirings
Original language description
A lattice-ordered group (an L-group) can naturally be viewed as a semiring. We give a full classification of (abelian) L-groups which are finitely generated as semirings by first showing that each such L-group has an order-unit so that we can use the results of Busaniche, Cabrer and Mundici. Then, we carefully analyze their construction in our setting to obtain the classification in terms of certain L-groups associated to rooted trees (Theorem 4.1)
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Commutative Algebra
ISSN
1939-0807
e-ISSN
—
Volume of the periodical
2017
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
26
Pages from-to
387-412
UT code for WoS article
000406771000004
EID of the result in the Scopus database
—