Idempotence of finitely generated commutative semifields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383601" target="_blank" >RIV/00216208:11320/18:10383601 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/18:00324869
Result on the web
<a href="https://doi.org/10.1515/forum-2017-0098" target="_blank" >https://doi.org/10.1515/forum-2017-0098</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/forum-2017-0098" target="_blank" >10.1515/forum-2017-0098</a>
Alternative languages
Result language
angličtina
Original language name
Idempotence of finitely generated commutative semifields
Original language description
We prove that a commutative parasemifield S is additively idempotent, provided that it is finitely generated as a semiring. Consequently, every proper commutative semifield T that is finitely generated as a semiring is either additively constant or additively idempotent. As part of the proof, we use the classification of finitely generated lattice-ordered groups to prove that a certain monoid associated to the parasemifield S has a distinguished geometrical property called prismality.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Forum Mathematicum
ISSN
0933-7741
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
6
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
1461-1474
UT code for WoS article
000448688700008
EID of the result in the Scopus database
2-s2.0-85050095736