CONJECTURES ON ADDITIVELY DIVISIBLE COMMUTATIVE SEMIRINGS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00112358" target="_blank" >RIV/00216224:14310/16:00112358 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/16:10331679
Result on the web
<a href="https://www.degruyter.com/downloadpdf/j/ms.2016.66.issue-5/ms-2016-0203/ms-2016-0203.pdf" target="_blank" >https://www.degruyter.com/downloadpdf/j/ms.2016.66.issue-5/ms-2016-0203/ms-2016-0203.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/ms-2016-0203" target="_blank" >10.1515/ms-2016-0203</a>
Alternative languages
Result language
angličtina
Original language name
CONJECTURES ON ADDITIVELY DIVISIBLE COMMUTATIVE SEMIRINGS
Original language description
We present a series of open questions about finitely generated commutative semirings with divisible additive semigroup. In this context we show that a finitely generated additively divisible commutative semiring is idempotent, provided that it is torsion. In the particular case of a one-generated additively divisible semiring without unit, such a semiring must contain an ideal of idempotent elements.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Slovaca
ISSN
0139-9918
e-ISSN
1337-2211
Volume of the periodical
66
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
6
Pages from-to
1059-1064
UT code for WoS article
000393122500004
EID of the result in the Scopus database
2-s2.0-85011290990