All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CONJECTURES ON ADDITIVELY DIVISIBLE COMMUTATIVE SEMIRINGS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00112358" target="_blank" >RIV/00216224:14310/16:00112358 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/16:10331679

  • Result on the web

    <a href="https://www.degruyter.com/downloadpdf/j/ms.2016.66.issue-5/ms-2016-0203/ms-2016-0203.pdf" target="_blank" >https://www.degruyter.com/downloadpdf/j/ms.2016.66.issue-5/ms-2016-0203/ms-2016-0203.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/ms-2016-0203" target="_blank" >10.1515/ms-2016-0203</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CONJECTURES ON ADDITIVELY DIVISIBLE COMMUTATIVE SEMIRINGS

  • Original language description

    We present a series of open questions about finitely generated commutative semirings with divisible additive semigroup. In this context we show that a finitely generated additively divisible commutative semiring is idempotent, provided that it is torsion. In the particular case of a one-generated additively divisible semiring without unit, such a semiring must contain an ideal of idempotent elements.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematica Slovaca

  • ISSN

    0139-9918

  • e-ISSN

    1337-2211

  • Volume of the periodical

    66

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    6

  • Pages from-to

    1059-1064

  • UT code for WoS article

    000393122500004

  • EID of the result in the Scopus database

    2-s2.0-85011290990