STEADY SOLUTIONS TO VISCOUS SHALLOW WATER EQUATIONS. THE CASE OF HEAVY WATER
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369608" target="_blank" >RIV/00216208:11320/17:10369608 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4310/CMS.2017.v15.n5.a8" target="_blank" >http://dx.doi.org/10.4310/CMS.2017.v15.n5.a8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/CMS.2017.v15.n5.a8" target="_blank" >10.4310/CMS.2017.v15.n5.a8</a>
Alternative languages
Result language
angličtina
Original language name
STEADY SOLUTIONS TO VISCOUS SHALLOW WATER EQUATIONS. THE CASE OF HEAVY WATER
Original language description
In this note, we show the existence of regular solutions to the stationary version of the Navier-Stokes system for compressible fluids with a density dependent viscosity, known as the shallow water equations. For arbitrary large forcing we are able to construct a solution, provided the total mass is sufficiently large. The main mathematical part is located in the construction of solutions. Uniqueness is impossible to obtain, since the gradient of the velocity is of magnitude of the force. The investigation is connected to the corresponding singular limit as Mach number goes to zero and methods for weak solutions to the compressible Navier-Stokes system.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Sciences
ISSN
1539-6746
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
1385-1402
UT code for WoS article
000404018900008
EID of the result in the Scopus database
2-s2.0-85021309949