A NEW ALGORITHM FOR APPROXIMATING THE LEAST CONCAVE MAJORANT
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10370811" target="_blank" >RIV/00216208:11320/17:10370811 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.21136/CMJ.2017.0408-16" target="_blank" >http://dx.doi.org/10.21136/CMJ.2017.0408-16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/CMJ.2017.0408-16" target="_blank" >10.21136/CMJ.2017.0408-16</a>
Alternative languages
Result language
angličtina
Original language name
A NEW ALGORITHM FOR APPROXIMATING THE LEAST CONCAVE MAJORANT
Original language description
The least concave majorant, (F)over-cap, of a continuous function F on a closed interval, I, is defined by (F)over-cap(x) = inf{G(x): G >= F, G concave}, x is an element of I. We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on I. Given any function F is an element of C-4(I), it can be well-approximated on I by a clamped cubic spline S. We show that (S)over-cap is then a good approximation to (F)over-cap. We give two examples, one to illustrate, the other to apply our algorithm.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-14743S" target="_blank" >GA13-14743S: Function spaces, weighted inequalities and interpolation II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
67
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
23
Pages from-to
1071-1093
UT code for WoS article
000416445500014
EID of the result in the Scopus database
2-s2.0-85028360306