All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A sharp variant of the Marcinkiewicz theorem with multipliers in Sobolev spaces of Lorentz type

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456382" target="_blank" >RIV/00216208:11320/22:10456382 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yq9Tr3N_5T" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yq9Tr3N_5T</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jfa.2021.109295" target="_blank" >10.1016/j.jfa.2021.109295</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A sharp variant of the Marcinkiewicz theorem with multipliers in Sobolev spaces of Lorentz type

  • Original language description

    Given a bounded measurable function sigma on R-n, we let T-sigma be the operator obtained by multiplication on the Fourier transform by sigma. Let 0 &lt; s(1) &lt;= s(2) &lt;= ... &lt;= s(n) &lt; 1 and psi be a Schwartz function on the real line whose Fourier transform (psi) over cap is supported in [-2, -1/2] boolean OR [1/2, 2] and which satisfies Sigma(j is an element of Z) (psi) over cap (2(-j) xi) = 1 for all xi not equal 0. In this work we provide a sharp form of the Marcinkiewicz multiplier theorem on L-p by finding an almost optimal function space with the property that, if the function (xi(1), ... , xi(n)) -&gt; Pi(n)(i=1)(I - partial derivative(2)(i))(si/2) [Pi(n)(i=1)(psi) over cap(xi(i))sigma(2(j1) xi(1), ... , 2(jn) xi(n))] belongs to it uniformly in j(1), ... , j(n) is an element of Z, then T-sigma is bounded on L-p(R-n) when vertical bar 1/p - 1/2 vertical bar &lt; s(1) and 1 &lt; p &lt; infinity. In the case where s(i) not equal s(i+1) for all i, it was proved in [12] that the Lorentz space L-1/s1,L-1(R-n) is the function space sought. Here we address the significantly more difficult general case when for certain indices i we might have s(i) = s(i+1). We obtain a version of the Marcinkiewicz multiplier theorem in which the space L-1/s1,L-1 is replaced by an appropriate Lorentz space associated with a certain concave function related to the number of terms among s(2), ... , s(n) that equal s(1). Our result is optimal up to an arbitrarily small power of the logarithm in the defining concave function of the Lorentz space. (c) 2021 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Functional Analysis

  • ISSN

    0022-1236

  • e-ISSN

    1096-0783

  • Volume of the periodical

    282

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    36

  • Pages from-to

    109295

  • UT code for WoS article

    000715370800001

  • EID of the result in the Scopus database

    2-s2.0-85118526392